What is the effect of dung beetles on gastrointestinal nematodes of stock?

Simon V. Fowler¹ and Paul Weston²

- ¹ Landcare Research, New Zealand
- ² Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga NSW, Australia

1. Summary

- This review was undertaken because of concerns that dung beetles may increase levels of gastrointestinal nematodes in stock in New Zealand because i) dung burial may increase survival of nematodes compared to dung remaining on the pasture surface; and ii) large numbers of infective larvae could then migrate back to the surface in damp soils.
- 2) The review found that most studies comparing dung in the presence or absence of dung beetles reported substantial reductions in the number of infective 3rd stage larvae of gastrointestinal nematodes at the soil surface or on pasture foliage.
- 3) The break-up of dung on the surface by dung beetles can result in death of the desiccationintolerant 1st and 2nd stage nematode larvae, although greater access to oxygen in broken-up dung can lead to a higher proportion of nematode eggs hatching compared to dung not exposed to beetles.
- 4) In most cases, burial of dung by dung beetles appeared to destroy a high proportion of nematodes, presumably by the processing of dung by the adult beetles. One study showed that recently buried dung brood balls contained around 99% fewer nematode larvae than undisturbed dung pats remaining on the surface.
- 5) Nematode larvae are capable, given moist enough conditions, of migrating back to the surface from dung buried to 10 cm or sometimes deeper. However, even shallow burial is likely to provide a hurdle for larval migration when soils do not have high moisture content, and this hurdle effectively increases with increased burial depth. Experiments where dung was buried near to artificial barriers often reported larval migration from depths of 15–20 cm. However, the barriers may be providing continuous films of moisture encouraging larval migration so these results need to be interpreted with caution.
- 6) The concern that burial of dung by dung beetles could lead to a 'time bomb' effect where later migration to the surface could increase infection of grazing stock, compared with dung remaining intact on the surface, is a possibility that was not supported by the majority of studies.
- 7) Many field studies of the effect of dung beetle activities were conducted in warm, tropical environments, so these may not necessarily be relevant to cooler climates. Other trials were laboratory based and were operated at temperatures that were more akin to a warm temperate summer. A few dung burial trials were conducted outside in cool temperate areas, but none used dung beetles. Overall, the effect of climate on the interaction between dung beetles, gastrointestinal nematodes and stock re-infection rates are complex, and some further studies in cool temperate areas would be useful.

8) The overall conclusion is that in most weather conditions dung beetle activity will either reduce (or make little difference to) infective larval nematode numbers available to re-infect stock. It is considered highly unlikely that the action of dung beetles will increase infection rates of gastrointestinal nematodes of stock.

2. Introduction

Concerns were raised before the release of dung beetles in Australia that the survival of gastrointestinal nematodes (GI) of stock could be enhanced in buried dung, and then later migration to the surface of the infective 3rd stage larvae (L3) could lead to greater infection rates of stock (Hughs 1975). The same issues have been raised in New Zealand. Examples of quotes from New Zealand parasitologists are:

"Results of studies in New Zealand and overseas have been variable; some beetles reduced larval numbers while others actually increased them." Vlassoff et al. (2001)

"A risk of dung burial is that remaining viable eggs and larvae may be protected from climatic extremes and ultraviolet radiation which could enhance their survival." Vlassoff et al. (2001)

"If large numbers of L3 are able to survive in soil during periods of drought ... (then this could be) a potential explanation for the rapid increase in pasture larval counts observed after the first significant rains in late summer/autumn in some years." Vlassoff et al. (2001)

"Dung burial may not always lead to a reduction in pasture larval burdens. Persistence of soil moisture in the vicinity of faecal pats may cancel out the reductions achieved in surface larval numbers and actually encourage later larval migration onto herbage." Hein et al. (2001)

"Most studies were conducted in warm, dry climates that may not be relevant to predicting the interactions of dung beetles and GI nematodes in cooler, temperate climates." (I. Sutherland pers. comm.)

This review has attempted to access all the literature on the effects of dung beetles on the nematodes that can infect stock as free-living 3rd stage larvae on pasture. Where relevant, studies that artificially buried dung and measured the effects of this on nematodes have also been included.

3. Methods

Literature was searched using databases and search engines including Google, Web of Science and CAB Abstracts. Quantitative data on the effect of dung beetles on the levels of GI nematodes was sought, and the type of experiments used and the weather conditions (or conditions in the laboratory) noted. Where necessary, climate information was obtained from websites for the study sites. In one case (Reinecke 1961), the author had not analysed the extensive data set, but had presented the raw data so a new analysis was conducted (see Appendix 1/Supplementary Information for more details).

To interpret the studies, the activities of dung beetles that could affect GI nematodes were divided into firstly the feeding/processing of dung on the surface and the resulting break-up and possible desiccation of the fresh pat and secondly the burial of dung by beetles.

Author	Animal	Nematode numbers after dung	Evidence larval	Location, pasture moisture or	Comments
	dung	burial/dispersal	migration from buried	rainfall information	
	used		dung (+/- increased		
			longevity of larvae)?		
Bassett et al 2014	Cattle	Field exclusion of <i>Copris incertus</i> . The number of dung beetle holes positively associated with a small increase in L3 numbers in dung and foliage after 35 days	n/a	Northland, NZ. Natural rainfall.	Conference presentation/abstract only. Probably a result of increased nematode egg hatch (increased oxygenation) with natural (low?) levels of dung beetle activity
Bergstrom et al. 1976	Cattle & sheep	10–20 <i>Aphodius</i> and <i>Canthon</i> spp beetles exposed to dung for 1–5 days reduced nematode eggs by 24–90%	n/a	Lab expt on moist filter paper 20 °C.	
Bergstrom 1983	Elk	1–2 <i>Aphodius</i> beetles per 1g of faeces over 4– 36h reduced larval numbers by 77–92%	n/a	Lab expt: temp 4–24 °C (night – day) on moist filter paper	Low numbers of beetles to simulate numbers seen in the field in the Tetons, USA
Bryan 1973	Cattle	48–93% less on foliage	Yes, but later peak small	SE Queensland, trial partly irrigated. Apr–Jun temperatures similar to northern NZ summer.	See detailed discussion in Appendix 1
Bryan 1976	Cattle	40–74% less on foliage, massively less in dung. 99.5% reduction in larval numbers in brood balls cf surface dung unattacked by beetles.	Yes, but later peak small	SE Queensland, soil moisture high at start then declining. Temperature as for Bryan 1973	See detailed discussion in Appendix 1. Brood ball data is unique but the massive reduction in larval numbers was not pointed out by the author.
Bryan & Kerr 1989	Cattle	Infective larvae on grass reduced by 57% (with minimal beetle activity), 90% (moderate beetle activity) and 94% (intensive beetle activity) compared with intact pats	No	Central Queensland. 780mm rainfall/year. Warmer than NZ.	Study ran from 1975 to 1979
Chirico et al. 2003	Cattle	Dung dwelling beetles initially increased L3 numbers in artificial pats (90% RH) over 12 days, but after another 12 days numbers were much higher in control pats. Overall, L3 numbers were 2.4x higher in dung without beetles.	n/a	Indoors – 90% RH and 21 °C	Increase after 12 days attributed to increased aeration. Decrease after 24 days could be due to beetle feeding, dung desiccation or competition with saprophytic nematodes (arriving on beetles), but either way beetles overall decreased L3 numbers
Coldham 2011	Cattle	Expts carried out in buckets and misted daily with 5 ml of water. Artificial dung burial resulted in 21x the numbers of nematodes in surface soil cf dung on surface. In contrast, beetle burial appeared to destroy nematodes. Where surface dung was kept wet then nematode numbers were similar from buried and surface dung treatments. Where surface dung was not subjected to artificial rain, nematode numbers were reduced by 86%.	Yes – for artificially buried dung (15 cm deep). No for dung buried by beetles (as no nematodes appeared to survive).	Indoors parts of trials at 25 °C. Northern Tablelands, NSW. Annual rainfall 650–1200+ mm (mostly in summer). Cool summers (rarely > 32 °C)Winter snowfalls & frequent frosts (to -10 °C).	Burial rates were low: Onthophagus australis (50%), O. granulatus (20%), O. gazella (30%) Artificially buried dung given optimal conditions for nematode larvae to migrate back to surface (pots stood in water to guarantee soil was wet). Sampling by extracting from top 2 cm of soil (no foliage in pots)

Author	Animal	Nometede numbere efter dung	Evidence lenvel	Leastion neature mainture or	Commonto
Author	Author Annual Nematode numbers after du			Location, pasture moisture or	Comments
	used	buriai/dispersal	migration from buried	rainfall information	
	useu		dung (+/- increased		
			longevity of larvae)?		
English 1979	Horse	60% reductions in strongylids on grass clippings from <i>O. gazella</i> in summer period, but beetle activity curtailed by heavy rain or cooler temperatures.	No sign of effect in data (no later peak in dung with beetles). However, author assumed migration was occurring as soil moisture levels were high for entire period.	Southern Queensland. Rainfall (av. 1158 mm/yr - described as regular and prolonged for much of study plus some periods of heavy rain noted (e.g. 288 mm in Feb1976)	Onthophagus granulatus (native to Australia) in large numbers but failed to disperse dung. Introduced <i>O. gazella</i> much more effective but only in summer. Most nematode infection of horses occurs in spring/auturm, so additional species needed if dung beetles to be effective.
Fincher	Cattle	23–54% less in cattle; 75–93% less on foliage	If present, not enough to	Coastal Georgia, USA.	No replication
1973		(comparing natural dung beetle levels or	interfere with reductions	1174mm/yr - spread evenly.	
		enhanced dung beetle levels with a dung beetle	in larval numbers in	Summer mean temperature warm	
		exclusion treatment)	presence of beetles	(July mean max 32 °C)	
Fincher 1975	Cattle	55–89% less in cattle (treatments as above)	As above	As above	No replication
Fincher & Stewart 1979	Cattle	Variable numbers of L3 on grass with dung burial 2.5–10 cm (but no surface check, 1 rep/depth) Replicated glass tube expt – L3: 89% (2.5 cm) and 95% (10 cm) reductions cf surface dung.	Yes. In tube expt, numbers from surface dung peaked at 3–4 wks, much lower numbers from buried dung peaked at 3–8 wks.	As above. 37 cm rainfall during the 16 week experiment. Glass tube expt indoors at 27 °C, 95% RH.	Comments that glass tubes may have facilitated migration of larvae from relatively deeply buried dung because there would be a continuous film of moisture on the surface of the glass (hence why some larvae could migrate from depths of 10–15 cm).
Forgie et al 2018	Cattle	Overall L3 numbers reduced by 71% with dung beetle activity	No	Natural rainfall but extra water added before each foliage sample to facilitate L3 dispersal	Variable results between soil types (sandy loam, clay loam and compacted clay), consistent with some other studies, but not statistically significant.
Grønvold 1987	Cattle	Earthworms (not dung beetles) excluded from pats. 50% decrease in <i>Cooperia</i> L3 over late summer to late spring.	Perhaps a very minor peak the following spring, but still about 60% lower than controls.	Denmark. Substantial rainfall in all months.	
Grønvold et	Cattle	With dung beetles: 88% less larvae in cow pats	No (controls without	Zimbabwe, >800mm/yr. Warmer	
al. 1992		(P<0.01); 28% less in 0–6 cm soil (NS); 70%	beetles had same no.	than NZ: average monthly	
		higher in soil 6–12 cm (NS). 70-90% less by rain	larvae in soil as	temperature from 13 °C (June) to	
		splash.	treatments where	20 °C (Nov)	
			beetles buried dung –		
			duration 33 days)		

Table 1. Summarised information from studies of dung beetle activity or dung burial and nematodes used in this review.

Author	Animal dung	Nematode numbers after dung burial/dispersal	Evidence larval migration from buried	Location, pasture moisture or rainfall information	Comments
	used		dung (+/- increased longevity of larvae)?		
Houston et al. 1984a	Horse	Mixed results over weekly sampling (4 dates). Treatments with beetles (22 or 44 pairs) usually higher than controls (no beetles) but differences not statistically significant.	They claim emergence from buried dung but I don't think this is supported by the data to any great extent.	Texas. Very low rainfall until 40 mm in one day between sampling periods 3 and 4 (by which time ³ / ₄ of control dung had been removed!). 5 mm water added after 2 nd sample but not likely to be enough to penetrate <i>intact</i> pats. Warmer and drier than NZ.	Foliage and dung samples mixed. Authors thought more L3 might have emerged from controls if trial had run longer (but all dung sampled by then!). Slightly odd expt design as control treatment ended up with ¾ of dung removed by sampling period 3–4, whereas in beetle treatments the dung was dispersed/buried, so less of it would have been removed for sampling. Makes data hard to interpret.
Houston et al. 1984b	Horse	Very few L3 migrated onto foliage from burial depths >5 cm (although 1 L3 did emerge from dung buried to 20 cm)	Emergence from buried dung, but not really any later peak from more deeply buried dung.	Watered to saturation once dung buried. Then sufficient water provided for plant growth. College Station, Texas. As above.	
Hutchinson et al. 1989	Horse	More larvae in faeces protected from beetles (numbers per gram – see comments on same trial in Mfitilodze & Hutchinson 1988). Larval yields on grass samples were higher with protected faeces, but differences often not large and varied by year.		Tropical Queensland. Warmer than NZ. Well-defined summer wet season.	Larval migration to grass only occurred in summer after rains had started (Jan–May).
Krecek & Murrell 1988	Cattle	n/a	Ostertagia appeared capable of migrating 15 cm into soil and then returning to surface	Beltsville (nr Washington), USA. Most of trial in Oct/Nov (mean max 21 °C, mean min 10 °C). Rainfall 200mm in Oct/Nov.	30 cm diam. steel cylinders to 5-15 cm: provided an easy pathway for larvae as suggested by Fincher & Stewart (1979) for glass tubes? High rainfall fits with last high no. larvae outside 15 cm cylinder.
Lucker 1936	Horse	Percentage recoveries in surface soil of buried larvae ranged from 0.02–21% (at 2.5cm), 0–3.9% (at 5–6 cm), 0.004–1.9% (at 7.5 cm) 0–1.2% (at 10–15 cm). Some unquantified recovery from 20 cm burial of horse dung in coarse sand. A range of soil types used, with reduced recovery from heavy clay soils.	Yes, but substantial migration to surface only with shallow burial	"Precipitation invariably occurred" in field trials. In laboratory/covered trials soil was kept moist. Beltsville (nr Washington, DC). Mean monthly max 5–31 °C, min -5–19, avg annual rain 1110mm. More continental climate than NZ.	
Lucker 1938	Horse	Percentage recoveries in surface soil from dung burial in sandy clay loam, sandy loam or coarse sand were 0.07–8.9% (7–9 cm), 0.0009–3.5% (15–16 cm), 0.0009–0.9% (20–21 cm), 0.0–0.4% (25–27 cm). Zero recoveries from clay soil.	Yes. Evidence of ~week delay in larval recoveries with deep dung, but recoveries nearly always higher for shallow burial at all sample dates.	Laboratory study. "Soils were kept moist at practically all times more conducive to the migration of the infective larvae than would occur ordinarily in a similar period in the field"	Both Lucker 1936 and Lucker 1938 indicate that "lighter soils, such as fine sandy loam, are most favourable for vertical migration of horse strongyle larvae." Dung beetles typically will bury to the deep end of their depth burial range in light soils.

Table 1. Summarised information from studies of dun	g beetle activity or dun	g burial and nematodes	used in this review.
	S beene denvity of during	S burnar and mernatoues	

Author	Animal dung used	Nematode numbers after dung burial/dispersal	Evidence larval migration from buried dung (+/- increased longevity of larvae)?	Location, pasture moisture or rainfall information	Comments
Mfitilodze & Hutchinson 1988	Horse	Dung exposed to beetles for 7 days had 20–80% less infective larvae compared with beetle excluded dung. Very variable across seasons so concluded that not epidemiologically significant.	Larvae measured in surface dung not on grass/soil	See Hutchinson et al. 1989	Hutchinson et al. 1989 more important as it uses the same experiment over longer time frame and includes grass samples. L3 numbers in the dung turns out to not really matter. However, using larvae/gram ignores probable large reduction in total wet weight of beetle affected pats in 7 days ("faecal pellets were usually completely broken down to a flattened mass of fibrous debris in 24h").
Persson 1974	Cattle	Nematode eggs or L3 were buried to 10 or 20 cm and recoveries made from pasture foliage after 1.5-8 months. More migration to the surface occurred in spring trials (and more from 10 cm than 20 cm). In autumn there was mostly less migration and no effect of depth.	n/a	Sweden	Relatively high rates of migration from 20 cm may have been encouraged by the barriers used in the experimental design. Trial was designed to measure effects of dung burial by ploughing rather than actions of dung beetles
Popay & Marshall 1996	Sheep	Onthophagus posticus and O. granulatus mostly reduced larval numbers in dung (although 1 result showing significant reverse effect).	No: <i>O. posticus</i> increased larval no.s in soil, but no significant increase on foliage	NZ. Ruakura.	Little dung buried/removed. Not clear why <i>O. granulatus</i> did so little burial (nb this species ineffective even at high numbers in English (1979). Foliage sampling was only done on single dates for each trial, so no tracking through time.
Reinecke 1960	Cattle	Dung beetle activity encouraged nematode eggs to hatch but larvae desiccated. Dung beetles reduced nematode larvae in pats by 99%, and no increase in larvae in the soil beneath pads. In wet trials, beetles reduced larvae on foliage by 87%. In dry trials no significant difference +/- beetles.		NW Cape, South Africa "semi- arid". Cool dry winters and hot wet summers. 'Wet trials' – mean max 24–31 °C, mean min 11–17 °C, mean daily rainfall 2–15mm (annual equivalent = 1750mm)	The quantitative results presented here uses the original data from Reinecke (1960) but re-analyses it (details in Appendix 1)
Sands & Wall, 2016	Cattle	Mainly endocoprid (<i>Aphodius</i>) spp. L3 numbers increased after 2 weeks with db activity (increased oxygen?) but effect minor cf. decrease in weeks 4-10 (overall, db activity reduced L3 on grass by 19%). Enhanced rainfall treatment increased L3 numbers on grass (eliminating effects of db's on L3 numbers)	n/a	UK (Wales). Rainfall 178mm over 10 wk field expt. Water added to pats and surrounds the day prior to grass sampling to encourage L3 migration. Enhanced rainfall treatment (+80% above normal).	Relatively high latitude hence mainly endocoprid db's. Added water would increase L3 numbers overall.
Waghorn et al. 2002	Sheep	Artificially buried dung increased nematode numbers on foliage in trial 2 (by 88%) but no increase in trial 1. Greater total numbers in pots from buried dung in both trials.	Yes, but burial only 5cm (no evidence on longevity)	NZ. Rainfall 90 mm (over 28 days), 103 mm (over 34 days)	Manual dung burial to 5 cm, so no dung beetle activity (breaking up/processing dung). Sampling only on one date so no tracking through time. Note contrast to Coldham (2011) result above where artificial burial led to survival and migration of larvae whereas burial by dung beetles didn't.

Table 1. Summarised information from studies of dung beetle activity or dung burial and nematodes used in this review.

Author	Animal dung used	Nematode numbers after dung burial/dispersal	Evidence larval migration from buried dung (+/- increased longevity of larvae)?	Location, pasture moisture or rainfall information	Comments
Waghorn et al 2011	Sheep	Field trial at three sites in NZ. Dung buried to 5cm yielded about 2-15x more L3 approx 30 days later (summed across remaining dung, foliage etc) cf dung on surface. Earthworm activity may have reduced L3 numbers by 50-60%. No burying dung beetles at sites.	n/a – numbers of L3 on foliage not presented or analysed.	NZ. Natural rainfall varied but mean monthly totals around 100- 200 mm.	Comments as for Waghorn et al 2002.
Waterhouse 1974	Cattle	48–93% reduction in larvae on pasture	Not mentioned	Not mentioned	Just summarising studies by Bryan (1973, 1976) etc

4. Results and Discussion

4.1 Break-up of dung on the surface and processing/feeding by dung beetles

4.1.1 Break-up and desiccation of dung

Dung beetles break up the dung on the surface in the process of feeding or creating brood balls. Six studies show substantial reductions in nematode levels in dung exposed to beetles compared with dung unexposed to beetles (Bergstrom et al. 1976; Bergstrom 1983; Bryan 1976; Chirico et al. 2003; Grønvold et al. 1992; Popay & Marshall 1996; Reinecke 1960). However, if the broken-up dung on the pasture surface remains wet enough, and/or conditions are warm enough to result in very rapid development of the desiccation-resistant 3rd stage larvae, then surface dung could maintain high levels of nematodes despite some activity by beetles (Coldham 2011; Hutchinson et al. 1989; Sands & Wall 2017). One study of dung-dwelling beetles (i.e. species that don't bury dung) showed that the beetles improved the conditions in a dung pat for development of the infective 3rd stage nematode larvae in the first 12 days, but that larger numbers of larvae were present in the pats without beetles after 24 days – with overall numbers of 3rd stage larvae being 2.4x higher (Chirico et al. 2003). Similar, but small, effects occurred with L3 larvae on pasture grass in field trials in NZ and the UK (Bassett et al 2014; Sands & Wall 2017). Popay and Marshall (1996) also conducted one trial where nematode numbers were significantly higher in surface dung in the presence of dung beetles. A possible explanation could be that increased levels of oxygen in dung broken up by beetles led to a higher proportion of nematode eggs hatching (Durie in Hughes 1975; Reinecke 1960; Sands & Wall 2017).). Greater aeration due to the activity of dung-dwelling beetles was also thought to explain the higher numbers of 3rd stage larvae after 12 days in the presence of beetles by Chirico et al. (2003). In this study, larval numbers were much higher in control pats after 24 days, giving an overall decrease in total larval numbers in the presence of beetles of 2.4×. Similarly, in a field trial in the UK where initial numbers of L3 larvae were higher for the first two weeks with dung beetle activity, this pattern was reversed after 4-10 weeks with an overall reduction of 19% in L3 larvae on pasture foliage as a result of dung beetle activity (Sands and Wall 2017).

To summarise, most studies show that dung beetles breaking up dung on the surface decreases survival of nematodes to the infective L3 stage. However, if conditions are wet enough then insufficient desiccation could occur and development to the L3 stage might be relatively unaffected by the surface activities of dung beetles. An increased proportion of nematode eggs could hatch in dung affected by dung beetles because of increased levels of oxygen (required for eggs to hatch) compared with intact dung pats. In wet conditions it is therefore possible that numbers of eggs developing to the L3 stage could be increased by the action of dung beetles on surface dung, although such an effect appears to occur very infrequently. In addition, when such damp conditions occur, intact dung pats (in the absence of dung beetles) would already be a major source of L3 nematodes, while dung beetles will typically be rapidly burying dung resulting in a proportion of dung (sometimes high) ending up buried before nematodes can develop to the L3 stage.

4.1.2 Direct feeding and processing of dung into brood balls

It has been suggested that the feeding action of dung beetles, and their processing of dung into brood balls for their larvae, could directly reduce the survival of nematode eggs. In particular, Miller et al. (1961) suggested that the grinding action of dung beetle mandibles destroyed nematode eggs.

However, Holter (2002) showed dung beetles filter small particles out of the dung and consume these rather than doing any chewing. Note that dung beetle larvae do have chewing mouthparts, but 3rd stage nematode larvae will have matured and possibly left the brood ball by the time the dung beetle eggs hatch. The finding by Miller et al. (1961) that dung beetle guts did not contain many intact nematode eggs is still significant in that the beetles themselves would not be capable of transporting nematode eggs or larvae to any great extent. Despite the critique of Holter (2002), it is still worth pointing out that in a parallel study with Cryptosporidium oocytes, Mathison & Ditrich (1999) showed that only small numbers of oocytes survived passage through the beetle guts. Like Miller (1961) they concluded that the grinding action of the beetle mouthparts destroyed most of the oocytes. Again, this appears to be unlikely given Holter's (2002) findings. However, Ryan et al. (2011) then go on to show that dung buried by dung beetles had far fewer oocytes than dung remaining on the surface. So, beetle processing of dung is reducing the survival of Cryptosporidium oocytes by some means even if the beetles do not chew or grind the dung. Note that *Cryptosporidium* oocytes are only 4-6 μ m in diameter so will be consumed by all the beetle species tested by Holter (2002). As Nichols et al. (2008) points out, we don't know the mechanism for the destruction of the small Cryptosporidium spores. It's quite possible that some of the same destruction could happen with nematode eggs. Indeed, there is direct evidence of this: Bryan (1976) dug out brood balls three days after dung beetles had been introduced to fresh dung pats on the ground above. The control dung pats (no beetles) had approximately 100,000 nematode larvae per 100 g fresh weight of dung. In contrast, the brood balls had only about 800 nematode larvae per 100 g fresh weight of dung, a 99.5% reduction. Given the three-day sampling period, all the nematode larvae would have been 1st or 2nd stage, so would not yet have migrated from the surface pat or the brood balls. The most obvious conclusion is that processing of the dung to create the brood ball resulted in the death of the vast majority of nematode eggs and/or larvae. This is clearly very relevant to the discussion of the effects of dung beetle burial versus artificial burial experiments (section 4.2.2, below).

4.1.3 Studies that don't distinguish effects of surface activities of dung beetles from dung burial

Several studies report reductions in nematode numbers due to dung beetle activity by measuring larval numbers on foliage/surface soil (Bryan 1973; Bryan & Kerr 1989; English 1979; Forgie et al 2018; Hutchinson et al. 1989; Reinecke 1960; Waterhouse 1974), but cannot distinguish the direct effects of beetles on dung on the surface with the effects of dung burial. Similarly, Fincher (1973, 1975) show reduction in infection rates of cattle from beetle activity that could be due to increased surface desiccation of dung and/or dung burial. Another study also shows a similar reduction in larval nematode numbers on foliage from earthworm burial of dung (Grønvold 1987).

One study showed dung beetles having no significant effect on nematode numbers on pasture adjacent to horse dung (Houston et al. 1984a), although the number of infective larvae was, at times, higher in the treatments with beetles than controls. Reinecke (1960) reported that the removal of small pieces of dung from pats by dung beetles could, under conditions of low rainfall, lead to low numbers of larval nematodes on grass (whereas the same low levels of rainfall were insufficient to allow migration of larvae out of intact pats). Hence, under these particular conditions there were occasions when larval numbers appeared higher in the presence versus the absence of beetles. However, an analysis of Reinecke's (1960) data failed to show that this was a statistically significant effect (Appendix 1). The larval numbers on the grass in these low rainfall trials were extremely small

compared to the larval counts on grass in trials that were conducted in higher rainfall conditions (Reinecke 1960; data analysed in Appendix 1). In another study (Popay & Marshall 1996), one trial resulted in an increase in nematode larvae on foliage with dung beetles present compared with controls, which approached statistical significance (P = 0.07). However, in the same study, most trials did not result in an increase in nematodes on foliage in the presence of dung beetles. Finally, a few studies tracked larval nematode numbers over time and, although there were usually higher numbers from dung in the absence of beetles at first, there were occasions when a lesser, later peak occurred in the presence of beetles which was assumed to be due to larval migration from buried dung. In two of these studies (Bryan 1973, 1976), there were examples where, towards the end of the experiment, there were more larval nematodes on the pasture foliage in the presence of dung beetles than in their absence. However, the levels were always much lower than the earlier peak numbers from dung in the absence of beetles. These important findings are discussed in more detail in the next section on migration of larvae from buried dung.

In summary, most studies using dung beetles show a substantial reduction in nematode larval numbers in the surface soil or on pasture foliage. Several studies show no statistically significant effects, and a few show that dung beetle activity can result in a delayed effect where nematode larvae are assumed to have migrated from buried dung and can give rise to occasions when larval numbers are higher in the presence rather than the absence of beetles. However, in these examples, this later peak in larval numbers is always small compared to the numbers of nematode larvae migrating from dung in the absence of beetles, and there are other issues of data interpretation discussed in more detail below and in the Appendix.

4.2 Burial of dung and potential migration of nematodes back to the soil surface

Dung beetles bury dung as brood balls in underground chambers for their offspring to feed on. As sexually immature adults they may also temporarily bury some dung which they feed on over a period of days. In these burial processes, some dung can end up on the insides of the burrow. The key question here is whether burial could increase the survival/longevity of nematode eggs and larvae compared to dung exposed to desiccation and sunlight on the surface, perhaps creating a 'time bomb' in the soil if nematode larvae could migrate back to the surface given sufficient moisture (Coldham 2011; Vlassoff et al. 2001; Waghorn et al. 2002). Here the evidence for increases in nematode larvae in soil at depth when dung is buried versus when dung remains on the surface is reviewed. The question is then asked whether burial depth influences the ability of L3 nematodes to migrate back to the soil surface and/or on to pasture foliage. Finally, the possibility of a delayed emergence of nematode larvae from buried dung, the so-called 'time bomb' effect, is reviewed.

4.2.1 Does burial of dung increase numbers of nematodes buried in the soil?

Two studies show that nematode numbers were higher in soil after dung beetles had buried dung compared to the numbers in soil when the dung remained on the surface (Bryan 1976; Popay & Marshall 1996). However, Bryan (1976) also presented data suggesting that 99.5% of nematode eggs/larvae were destroyed by dung beetles in making brood balls (as described in section 3.2, above). Two other studies suggest that dung buried by dung beetles has highly reduced numbers of nematodes. Firstly, Coldham (2011) showed that in moist conditions the same number of nematodes returned to the soil surface from artificially buried dung compared to moist dung on the surface, but

that burial of dung by dung beetles appeared to result in the destruction of nematodes. Secondly, Grønvold et al. (1992) showed no increase in nematodes in the soil (0-6 cm, 6-12cm, 12-18 cm) when beetles buried an average of 62% of the dung on the surface (compared with controls i.e. dung on the surface with no dung beetles).

Although Reinecke (1960) commented that "where rainfall was inadequate to cause larval migration, the presence of larvae in the soil was probably due to the mechanical removal of dung by beetles" a statistical analysis of the data as part of this review shows no increase of larvae in soil where dung beetles had been active in either dry or damp conditions (Appendix 1).

One study showed increased nematodes in the soil from artificial burial of dung compared to dung on the soil surface (Waghorn et al 2002), and another similar study showed higher numbers of L3 nematode larvae (combined total from soil, dung and on foliage) when dung was buried artificially to 5cm compared to being left on the surface (Waghorn et al 2011). Lucker (1938) and Persson (1974) record nematodes in soil after dung had been artificially buried but did not have a surface dung treatment to compare to the effect of dung burial.

To conclude, artificial burial may increase nematodes in the soil much more dramatically than burial by dung beetles. In some cases, burial by beetles appeared to destroy a high proportion of the nematodes, presumably by their processing of the dung.

4.2.2 Effects of burial depth on nematode larval abilities to return to the surface

It has been suggested that shallow buried dung may allow more nematodes to return to the surface compared with deeper burial. Two New Zealand studies have examples of nematodes returning to the surface from dung buried artificially to 5 cm (Waghorn et al. 2002) and by beetles to generally <5 cm (Popay & Marshall 1996).

Studies that artificially buried dung to a variety of depths typically show a dramatic reduction in the numbers of nematode larvae migrating to the soil surface and/or foliage with increased burial depth (Fincher & Stewart 1979; Lucker 1936, 1938). Several studies also report that the presence of artificial surfaces that would have provided continuous films of water seemed to encourage migration of nematode larvae from dung buried quite deep e.g. 25 cm in glass tubes in Fincher & Stewart (1979), or buried wooden boxes in Lucker (1936). Although not mentioned by the authors this could explain the unusual result of Krecek & Murrell (1988) who had one result where large numbers of nematodes apparently migrated from surface dung to get past a 15 cm deep steel barrier and then managed to return to the surface outside the barrier. This issue is discussed further in Appendix 1. The same effect may also explain the examples of large numbers of 3rd stage larvae migrating from dung buried as deep as 20 cm by Persson (1974).

To conclude, it is clear that nematode larvae are capable, given moist enough conditions, of migrating from dung buried to <10 cm or sometimes deeper. However, even shallow burial is likely to provide a hurdle for larval migration when soils do not have high moisture contents, and this hurdle effectively increases with increased burial depth. Experiments using artificial barriers that could provide continuous films of moisture for larval movement need to be interpreted with caution.

4.2.3 Evidence of delayed migration of L3 from buried dung resulting in a 'time bomb' effect?

With studies that have extended sampling over time we can ask if there is a first peak in larval numbers on the surface as expected from direct migration of infective larvae from surface dung, followed by a second peak in larval numbers from buried dung. This is particularly well illustrated by data from Bryan (1973), which showed a peak of about 450 larvae per gram of foliage at day 30 in dung only, followed by a rapid decline. A much lower (135 larvae/gram) and more prolonged peak in larvae was observed in the dung + beetles treatment such that, from days 50-80, there were actually more larvae in this treatment than in the dung only treatment. This delayed emergence of larvae is thought to be caused by nematode larvae emerging from buried dung (in this case as a response to a substantial rain event), but these results need to be interpreted with caution because of the removal of larvae at each sampling time. (See Appendix 1 for detailed analysis of results from Bryan's work.)

In his later study, Bryan (1976) carried out a more detailed experiment where dung pats, brood balls, soil etc were destructively sampled on four dates. Much of this has been reported above, but for this section the important difference to Bryan (1973) is that foliage samples were different radial subsamples around each pat approximately every 10 days, so the earlier sampling was probably not reducing nematode numbers in the later sampling by overall removal. Thus this data can be examined non-cumulatively with more confidence. Interestingly, the numbers of nematode larvae recovered from foliage were nearly always greater around intact pats compared with pats with dung beetles (see Appendix 1 for details). There was a slightly higher peak at day 84, right at the end of the experiment, in the treatment with the lowest number of dung beetles. Bryan (1976) concluded that the small amount of rain that fell had wetted dung that had been shredded by beetles, and hence encourage nematode larval migration from the shredded dung. However, it was suggested that the rain was insufficient to wet the intact encrusted pats in the control treatment that had no dung beetles, so nematodes remained trapped in these larger pats. Bryan (1976) considered that the encrusted control pats would have continued to release larger numbers of nematodes had there been sufficient rain to wet the intact pat.

Another study shows a delayed, small peak in nematode numbers reaching the surface due to migration from buried dung, but the numbers were still lower than the numbers migrating on these dates from intact pats which had had no beetle activity (Fincher 1973). Grønvold (1987) showed the same pattern with earthworm-buried dung. Finally, Fincher & Stewart (1979) show later peaks of infective larvae in their glass tube experiment: by week 8, higher levels of infective larvae were being recorded on the soil surface from dung buried at 7.5 - 10 cm compared with the dung on the surface treatment (but total numbers emerging from buried dung at these depths for the whole duration of the trial were only 2.3% of those in the surface dung treatment).

Coldham (2002) specifically set out to test for a 'time bomb' effect from dung buried by dung beetles but concluded that dung beetle burial destroyed all nematodes. Grønvold et al. (1992) showed a similar effect with dung beetle burial not increasing nematode numbers in soil.

In summary, just one study (Bryan 1973), carried out under irrigation, shows that dung beetle burial can create a situation where higher numbers of nematode larvae are sampled on pasture foliage in the presence versus the absence of beetles. However, the support for a 'time bomb' effect is weak for two reasons. Firstly, the later peak was far smaller than the earlier peak caused by direct nematode migration from pats without beetles. Secondly, without the destructive sampling of all the

foliage around the pats on each date it is likely that many larvae would have survived from the first large peak around the control pats. The sampling in this case was akin to the 'vacuuming' of nematode larvae that can be achieved by use of a different stock type – one of the potential recommendations for suppressing larval nematode numbers (e.g. Rattray 2003). It's quite possible then that in the absence of the sampling, larval nematode numbers would have remained higher in the controls than in the dung beetle affected pats. This is the pattern revealed in virtually every other studies of the potential 'time bomb' effect, with the exception of one final, low-level sample in Bryan (1976). The lack of the 'time bomb' effect in most/all studies is probably due to one of more of the following reasons:

a) Dung beetle feeding/processing of dung destroyed many/all nematodes in buried dung;

b) Buried nematodes can be trapped underground by lack of sufficient moisture in surface soil;

c) Dung was buried too deep for many L3 to return to the surface;

d) Dry dung on the surface still provided enough of a reservoir of desiccation-resistant L3 nematodes to swamp any later emergence of L3's from buried dung.

Point (d) is contradictory to the quote from Vlassoff et al. (2002) cited in the Introduction: *"if large numbers of L3 are able to survive in soil during periods of drought …* (then this could be) a potential explanation for the rapid increase in pasture larval counts observed after the first significant rains in late summer/autumn in some years".

However, point (d) is consistent with an observation by Bryan & Kerr (1989): "*Larvae in faecal pats deposited from July onwards during the 1977 drought survived in large numbers in these pats until mid-November when rain fell. Then they migrated as a single wave and the resultant pasture contamination was 10x higher than the usual spring maximum.*" In this example, faecal pats deposited in unusual increasingly dry conditions that lasted about 100 days contributed to the massive peak when the drought broke. It is also likely that as the ground became dry and hard there would be little burial activity by dung beetles because numbers of beetles typically decrease in drought conditions and any that were present would be unlikely to be able to bury dung in the hard, dry soil. Overall, it seems that the presence of dung beetles, either working through or burying dung, will not enhance the nematode reservoir problem in drought (rather they are likely to offer some mitigation).

5. Comparing the climates for overseas studies with New Zealand conditions

Where known, comments on the rainfall and temperatures under which overseas studies were undertaken are given in Table 1. Also noted is whether the study used irrigation. Data are from the papers where possible, otherwise a Google search was used to find climate data for the area where the trial was carried out.

Many of the studies in this review were carried out in warmer, more tropical regions than New Zealand, e.g. Bryan (1973, 1976) and English (1979) were conducted in southern Queensland. However, Bryan (1973, 1976) conducted experiments in autumn (April – June) and it is clear from climate data that these months typically have temperatures and rainfall similar to parts of New Zealand over the summer period (Appendix 1). Thus, the results of Bryan (1973, 1976) should at least be pertinent to parts of New Zealand in summer. The same is true for some of the large number of trials reported by Reinecke (1960), which although conducted in a semi-arid area has some spring and autumn periods when average temperatures were reasonably similar to the warmer parts of New Zealand in summer (see Appendix 1). However, several studies were clearly conducted in hotter weather than New Zealand normally experiences even in summer (Bryan & Kerr 1989; English 1979; Fincher 1973, 1976; Grønvold et al. 1992; Houston et al. 1984a, 1984b; Hutchinson et al. 1989).

Other trials were laboratory based and were operated at temperatures that were similar to those in some season/regions of New Zealand (Bergstrom 1983; Bergstrom et al. 1976; Coldham 2002; Lucker 1936, 1938). A few dung burial trials were conducted outside in temperate areas that were more directly comparable to most of New Zealand (Krecek & Murrell 1988; Lucker 1936), but none used dung beetles. More recently, a field trial in the northern part of NZ showed a 71% reduction in L3 nematode numbers on pasture foliage after dung beetle activity (Forgie et al 2018). A complication in Europe is that at higher latitudes, the dung beetle fauna is dominated by small endocoprid (dung-dwelling) species with burying species much less common: using this fauna, Sands & Wall (2017) showed overall small but reduced numbers of L3 larvae on pasture foliage with dung beetle activity, but only after a small initial peak was passed, and only under natural rainfall (enhanced rainfall increased the numbers of L3 on foliage and eliminated the treatment effects). TheFinally, the trial that tested dung burial by earthworms (Grønvold 1987) was located in Denmark, in a climate that would be cooler on average than New Zealand. Similarly, dung disappearance and reductions in total L3 numbers (combined in dung, upper soil layers and foliage) were thought to be caused by earthworm activity in artificial dung-burial trials in temperate conditions in NZ (Waghorn et al 2011).

Regarding moisture levels/rainfall, many trials either had similar amounts of rainfall to areas in New Zealand in at least some periods (Lucker 1938; Fincher 1973, 1975; Fincher & Stewart 1979; Grønvold 1987; Grønvold et al. 1992; Krecek & Murrell 1988), or supplemented lower rainfall with irrigation (Bryan 1973). Even Reinecke (1960) in a semi-arid zone only had very low rainfall in winter, with actually quite substantial rainfall in the warmer months (Appendix 1). Similarly, the study by Hutchinson et al. (1989) was carried out in a dry tropical region of Queensland, but there is a pronounced summer wet season when most of the 800-1000 mm of rain falls. For laboratory trials, moisture levels were maintained at levels sufficient to allow migration of 3rd stage larvae (Bergstrom 1983; Bergstrom et al. 1976; Coldham 2002; Lucker 1936, 1938). In some studies rainfall was clearly low for substantial periods of the trials (e.g. Bryan 1973, 1976). However, low rainfall for reasonably long periods of time is quite common in many parts of New Zealand, particularly in summer.

To summarise, although there is considerable overlap in temperatures and rainfall in many studies with likely conditions in New Zealand pastures, clearly some overseas trials were carried out in a number of climate types that are not found in New Zealand. Overall, overseas trials that examined the effect of dung beetle activity on nematode larval numbers were conducted in climates that are warmer on average than most areas of New Zealand. Nevertheless, some of the most detailed studies (e.g. Bryan 1976; Coldham 2002; Reinecke 1960) do contain trials that were conducted under environmental conditions that, at least at certain times, would not be unusual in New Zealand.

What effect are some of these differences in weather conditions likely to have on how relevant their results are for New Zealand? Broadly it seems likely that the effect of the breaking up and desiccation of dung by beetles (section 4.1, above) will be highly dependent on weather conditions.

As mentioned in section 4.1, cool, moist conditions are likely to reduce the impact of dung break-up on free-living stages of nematodes (Sands and Wall 2017).. However, it also appears that hot, wet conditions could result in such a rapid development to the desiccation resistant 3rd stage larval stage that surface dung break up could also be relatively unimportant. Given that New Zealand does tend to have dry, warm summers (Rattray 2003) it seems that dung break-up and desiccation from beetle activity could at least be important for reductions of nematode numbers in summer (or in dry periods in other seasons). Cool wet winters are likely to lead to prolonged survival of 3rd stage larvae both on the soil surface and in buried dung (Rattray 2003). In an area with cold damp winters (Denmark), one study showed that the overwintering surface dung (where earthworms had been excluded) led to higher numbers of infective larvae on foliage the following spring compared to the pats where dung had been buried (Grønvold 1987). There are no studies to inform whether the same effect would occur with dung buried by beetles before a cool wet winter, but the above discussion (sections 4.1 and 4.2) doesn't present any evidence that the results should be that much different between dung buried by earthworms or dung beetles. It is also clear that surface dung can be a key reservoir for the desiccation resistant 3rd stage larvae even after prolonged periods of drought (Bryan & Kerr 1989).

The effect of dung beetle feeding/processing of dung into dung balls on nematode numbers (section 4.1.2) would not seem to be directly influenced by the weather, but obviously weather influences levels of beetle activity. Overall, the review of overseas studies on the direct effect of dung beetle feeding/processing of dung on nematode numbers would seem to be relevant to New Zealand.

The ability of nematode larvae to migrate from buried dung to the soil surface (sections 4.2.2 and 4.2.3, above) will be critically affected by levels of soil moisture and hence rainfall. Soil temperatures *per se* are probably relatively unimportant although nematode larvae will survive for longer periods in cooler temperatures (Rattray 2003). Many studies had adequate moisture for larval migration so the overall result of this section of the review would seem to be able to be extrapolated to New Zealand.

Overall, the effects of climate on the interaction between dung beetles, gastrointestinal nematodes and stock re-infection rates are complex. However, there does not seem to be strong evidence from overseas studies that the typically cool, wet winters and warm, dry summers in New Zealand (Rattray 2003) will unduly alter the overall conclusion that in most weather conditions dung beetle activity will tend to reduce larval nematode numbers available to re-infect stock.

6. Acknowledgements

Dan Tompkins, Ian Sutherland and Liz Nichols made helpful comments on earlier versions of this review, which was originally prepared for the Technical Advisory Group meeting on dung beetle releases in NZ on 18th September 2012. Funding was provided by core research funding to Manaaki Whenua Landcare Research from the New Zealand Ministry for Business, Innovation and Employment and through the Dung Beetle Ecosystem Engineers Project.

7. References

Bassett, I, Waghorn, T, Leathwick, D, Beggs, J. 2014. Exotic dung beetles in in New Zealand: evaluating potential benefits and risks. Conference presentation and abstract. New Zealand Ecological Society Conference, Palmerston North.

https://www.researchgate.net/publication/269198421_Exotic_dung_beetles_in_in_New_Zealan d_evaluating_potential_benefits_and_risks

- Bergstrom, R.C. 1983. *Aphodius* Beetles as Biological Control Agents of Elk Lung worm, *Dictyocaulus hadweni*. Proceedings of the Helminthological Society, Washington 50, 236–239.
- Bergstrom, R. C., Maki, L.R., Werner, B.A.. 1976. Small dung beetles as biological control agents: laboratory studies of beetle action on trichostrongylid eggs in sheep and cattle feces. Proceedings of the Helminthological Society, Washington 43, 171–174.
- Bryan, R.P. 1973. The effects of dung beetle activity on the numbers of parasitic gastrointestinal helminth larvae recovered from pasture samples. Australian Journal of Agricultural Research 24, 161–168.
- Bryan, R.P. 1976. The effect of the dung beetle, *Onthophagus gazella*, on the ecology of the infective larvae of gastrointestinal nematodes of cattle. Australian Journal of Agricultural Research 27, 567–574.
- Bryan, R.P., Kerr J.D. 1989. Factors affecting the survival and migration of the free-living stages of gastrointestinal nematode parasites of cattle in central Queensland. Veterinary Parasitology 30, 315–326.
- Chirico, J., Wiktelius, S., Waller, P.J. 2003. Dung beetle activity and the development of trichostrongylid eggs into infective larvae in cattle faeces. Veterinary Parasitology 118, 157–163.
- Coldham, J. 2011. Dung beetles and internal parasites of sheep. Final report on project B.PRS.0502/ S2005/NO3. Meat & Livestock Australia Ltd, Sydney.
- English, A.W. 1979. The effects of dung beetles (*Coleoptera-Scarabaeinae*) on the free-living stages of strongylid nematodes of the horse. Australian Veterinary Journal 55, 315–321
- Fincher, G.T. 1973. Dung beetles as biological control agents for gastrointestinal parasites of livestock. Journal of Parasitology 59, 396–399.
- Fincher, G. T. 1975. Effects of dung beetle activity on the number of nematode parasites acquired by grazing cattle. *Journal of Parasitology* 61, 759–762.
- Fincher, G.T., Stewart, T.B. 1979. Vertical migration by nematode larvae of cattle parasites through soil. Proceedings of the Helminthological Society, Washington 46, 43–46.
- Forgie, S.A., Paynter, Q., Zhao, Z., Flowers, C., Fowler, S.V. 2018. Newly released non-native dung beetle species provide enhanced ecosystem services in New Zealand pastures. Ecological Entomology 43, 431–439
- Grønvold, J. 1987. Field experiment on the ability of earthworms (Lumbricidae) to reduce the transmission of infective larvae of *Cooperia oncophora* (Trichostrongylidae) from cow pats to grass. Journal of Parasitology 73, 1133–1137.
- Grønvold, J., Sommer, C., Holter, P., Nansen, P. 1992. Reduced splash dispersal of bovine parasitic nematodes from cow pats by the dung beetle *Diastellopalpus quinquedens*. Journal of Parasitology 78, 845–8.
- Hein, W.R., Shoemaker, C.B., Heath, A.C.G. 2001. Future technologies for control of nematodes of sheep. New Zealand Veterinary Journal 49, 247–251.
- Holter, P., Scholtz, C., Wardhaugh, K. 2002. Dung feeding in adult scarabaeines (tunnellers and endocoprids): even large dung beetles eat small particles. Ecological Entomology 27,169–176.

- Houston, R.S., Craig, T.M., Fincher, G.T. 1984a. Effects of *Onthophagus gazella* F (Coleoptera: Scarabaeidae) on free-living strongyloids of equids. American Journal of Veterinary Research 45, 572–574.
- Houston, R.S., Fincher, G.T., Craig, T.M. 1984b. Vertical migration of infective larvae of equine strongyles in sandy clay loam. American Journal of Veterinary Research 45, 575–577.
- Hughes, R.D., Ferrar, P., Macqueen, A., Durie, G.T., McKinney, G.T., Morley, F.H.W. 1975. Introduced dung beetles and Australian pasture ecosystems: papers presented at a symposium during a meeting of the Australia and New Zealand Association for the Advancement of Science at Canberra in January 1975. Journal of Applied Ecology 12, 819–837.
- Hutchinson, G.W., Abba, S.A., Mfitilodze, M.W. 1989. Seasonal translation of equine strongyle infective larvae to herbage in tropical Australia. Veterinary Parasitology 33, 251–263.
- Krecek, R.C., Murrell, K.D. 1988. Observations on the ability of larval *Ostertagia ostertagi* to migrate through pasture soil. Proceedings of the Helminthological Society, Washington 55, 24–27.
- Lucker, J.T. 1936. Extent of vertical migration of horse strongyle larvae in soils of different types. Journal of Agricultural Research 52, 353–361.
- Lucker, J.T. 1938. Vertical migration, distribution, and survival of infective horse strongyle larvae developing in faeces buried in different soils. Journal of Agricultural Research 57, 335–348.
- Nielsen, M.K., Kaplan, R.M., Thamsborg, S., Monrad, J., Olsen, S.N. 2007. Climatic influences on development and survival of free-living stages of equine strongyles: implications for worm control strategies and managing anthelmintic resistance. The Veterinary Journal 174, 23–32.
- Mathison, B., Ditrich, O. 1999. The fate of *Cryptosporidium* oocysts ingested by dung beetles and their role in the dissemination of cryptosporidiosis. Journal of Parasitology 85, 678–681.
- Mfitilodze, M.W., Hutchinson, G.W. 1988. Development of free-living stages of equine strongyles in faeces on pasture in a tropical environment. Veterinary Parasitology 26, 285–96.
- Miller, A., Chi-Rodriquez, E., Nichols, R.L. 1961. The fate of helminth eggs and protozoan cysts in human feces ingested by dung beetles (Coleoptera: Scarabeidae). American Journal of Tropical Medicine and Hygiene 10, 748–754.
- Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., Favila, M.E. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation 141, 1461–1474.
- Persson, L. 1974. Studies on the bionomics of eggs and infective larvae of *Ostertagia ostertagi* and *Cooperia oncophora* in soil. Zentralblatt fur Veterinarmedizin Reihe B 21, 318–328.
- Popay, A., Marshall, S. 1996. The effect of the dung beetles *Onthophagus posticus* and *Onthophagus granulatus* on survival of parasitic nematodes in sheep dung. AgResearch report for MRDC Project, number 96PR 36/1.1: 5pp.
- Rattray, P.V. 2003. Helminth Parasites in the New Zealand Meat & Wool Pastoral Industries: A Review of Current Issues. Final Report for Meat & Wool Innovation.
- Reinecke, R.K. 1960. A field study of some nematode parasites of bovines in a semi-arid area, with special reference to their biology and possible methods of prophylaxis. Onderstepoort Journal of Veterinary Research 28, 365–464.
- Ryan, U., Yang, R., Cameron, G., Doube, B. 2011. Effect of dung burial by the dung beetle *Bubas bison* on numbers and viability of *Cryptosporidium* oocysts in cattle dung. Experimental Parasitology 129, 1–4.
- Sands, B. Wall, R. 2016. Dung beetles reduce livestock gastrointestinal parasite availability on pasture. Journal of Applied Ecology 54, 1180–1189.
- Skipp, R.A., Hay, D.M., Leathwick, D.M., Popay, A.J. 2000. Biological control of gastrointestinal nematodes of livestock in faeces and pasture. Meat New Zealand Report on Project 96PR36/1.1.

- Vlassoff, A., Leathwick, D.M., Heath, A.C.G. 2001. The epidemiology of nematode infections of sheep. New Zealand Veterinary Journal 49, 213–221.
- Waghorn, T.S., Leathwick, D.M., Chen, L-Y, Gray, R.A.J., Skipp, R.A. 2002. Influence of nematophagous fungi, earthworms and dung burial on development of the free-living stages of *Ostertagia* (*Teladorsagia*) *circumcincta* in New Zealand. Veterinary Parasitology 104, 119–129.
- Waghorn, TS, DP Reynecke, A-MB Oliver, CM Miller, A Vlassoff, JP Koolaard & DM Leathwick. 2011.
 Dynamics of the free-living stages of sheep intestinal parasites on pasture in the North Island of New Zealand. 1. Patterns of seasonal development. New Zealand Veterinary Journal 59 (6), 279-286.

Waterhouse, D. F. 1974. The biological control of dung. Scientific American 230, 100–109.

Note: The report by Skipp et al. (2000) was accessed but contains the same information as Waghorn et al. (2002) and Popay & Marshall (1996).

Appendix 1: Supplementary information

Bryan (1973) and Bryan (1976) are important studies, so were reviewed in detail in the main text. The re-plotted data from Bryan 1976 are shown in Figure S1. There is a large first peak in larval nematode numbers on foliage (day 30) from direct larval emergence from surface dung in the absence of dung beetles. There is a second peak when dung beetles are present (days 50-70) which is thought to be caused by nematode larvae emerging from buried dung (in this case as a response to a substantial rain event on day 40). Note that the numbers of nematode larvae are much less than in the first peak, nevertheless between days 50-70 there are more nematodes on the grass in the dung beetle treatment than in the dung only treatment. However, this second peak needs to be interpreted with care as the sampling method used removed all foliage to ground level around each pat on each sampling date. Thus, had the grass not been removed, the numbers of nematode larvae around the control plots would have remained high until the L3 larvae died (rather than until they were removed by sampling).

Predicting L3 survival (had they not been removed by sampling) is not easy, but survival in warm, moist field conditions is typically suggested to be 10 weeks or more (e.g. Rattray 2003).

Data were also extracted from Bryan (1976) and re-plotted here (Figure S2). Bryan 1976 is the only study found that measured larval nematode numbers in brood balls. Data from the histograms in Bryan (1976) have been extracted and presented in Table S1. Dung burial by beetles does result in nematode larvae in the brood balls, however the numbers are dramatically reduced compared with dung remaining on the surface (Table S1).

Table S1. The numbers of nematode larvae (per 100 g dung) in the control pats (no dung beetles) versus brood balls dug out of the ground in the three dung beetle treatments. The mean numbers of larvae in the brood balls on each sampling date were used to calculate the percentage reduction versus numbers in the control pat. The most important comparison is at day 3 because no larvae would have reached the potentially migratory 3rd stage stage. This 99.5% reduction is presumably caused by the dung beetle burying activity which probably aerates and desiccates the dung (which will kill 1st and 2nd stage larvae) but also perhaps due to the processing of the dung by the specialised filtering mouthparts of the adult beetles. Data from Bryan (1976).

Treatment	Day 3	Day 8	Day 18	Day 84
Pat	100000	24938	590	750
2 beetles	*	900	150	150
10 beetles	300	220	550	300
30 beetles	800	320	180	30
Mean	550	480	293.3	160
% reduction	99.5%	98.1%	50.3%	78.7%

*No dung balls by day 3 in the 2-beetle treatments

Figure S2. Numbers of 3rd stage larvae recovered from pasture foliage. Data extracted from cumulative graph in Bryan (1976) and re-plotted non-cumulatively. Control pads had no dung beetles. Moderate rainfall events occurred early in the trial and also on days 14 and 53 (just preceding the two main peaks of larval migration). There was only 1 sampling date (day 84) when larval recoveries were substantially higher in one of the dung beetle treatments versus the controls (see text above for the author's explanation).

Although these studies were located at Glenlogan Field Station in SE Queensland, because they ran from April-June, the mean monthly temperatures and rainfall were a reasonable match for a northern NZ summer (Table S2).

Table S2. Mean monthly maximum and minimum temperature for the warmest summer months in Whangarei and Napier, compared with the experimental period (April-June) at Glenlogan Field Station, the field site for trials reported in Bryan (1973, 1976).

Location/Measure	January	February	March	
Whangarei – temperatures	24.4/15.4	24.2/15.4	23.0/15.0	
Whangarei - rainfall	90	112	142	
Napier - temperatures	24.4/14.6	24.1/14.5	22.6/12.8	
Napier - rainfall	48	62	85	
	April	May	June	
Glenlogan temperatures	26.9/14.2	23.8/10.9	21.3/6.8	
Glenlogan - rainfall	75.8	78.5	40.3	

The Glenlogan Field Station climate data were obtained from: http://weather.ninemsn.com.au/climate/station.jsp?lt=site&lc=40454

New Zealand climate data were obtained from: https://en.wikipedia.org/wiki/Whangarei http://en.wikipedia.org/wiki/Napier, New Zealand

Houston et al. 1984b

The data from this paper were plotted to illustrate the effect of burial depth more clearly (Fig. S3).

Figure S3. The numbers of 3rd stage larvae migrating onto pasture foliage from dung artificially buried to various depths. Data from Houston et al. (1984b).

Hutchinson et al. (1989) and Mfitilodze & Hutchinson (1988) show reductions in 3rd stage larvae of horse strongyloids in dung open to dung beetles compared with dung protected from beetles for 7 days. They claim these are minor, although this might underestimate the differences because numbers were expressed per gram wet weight of dung. Hence they assume that dung beetle activity (which they say shredded dung within 24 h) didn't reduce the total weight of the 1 kg artificial dung pat versus dung pats protected from beetles. However, Hutchinson et al. (1989) went on to measure larvae on the grass surrounding the pats after 7 days and then at monthly intervals. They found that numbers of infective larvae were slightly higher on average on grass around pats protected from

dung beetles, but numbers were quite variable over time, with no clear pattern, suggesting the dung beetle processing horse dung would be epidemiologically insignificant for strongyloids in this system. However dung beetles do not show any indication of making the situation worse. It seems that the eggs develop to the L3 stage so rapidly in the hot, wet summer conditions that the action of beetles dispersing the dung is not effective at killing larvae in the first two stages. At other times of the year, conditions are usually so dry that the larvae cannot migrate from the dung to the grass anyway.

Krecek & Murrell (1988) used buried barriers in the form of 30 cm diameter steel tubes to show that large numbers of nematode larvae could migrate from surface dung to at least 15 cm deep and then return to the surface outside the barrier. This result seems unusual in two respects. Firstly the numbers of nematodes migrating around the 15 cm deep barrier in particular is large compared with other studies above. Secondly most studies do not report nematodes penetrating soil very deeply without dung burial (e.g. Popay and Marshall 1996). It seems possible that barriers might encourage nematode movement in a similar way as Fincher & Stewart (1979) suggest for their glass tube experiment, and Lucker 1938 suggests for experiments with wooden barriers i.e. the damp barrier provides an easy route for larval travel. In Krecek and Murrell (1988) larval movement may also have been exacerbated by the heavy rain they report in the latter part of their trial: it may be that nematode larvae were virtually 'washed' down the inside of the steel cylinders. Bryan (1973) also makes the comment that heavy rain can wash nematode larvae deep into soil, although presents no data on this.

Lucker (1936, 1938) showed few nematode larvae reached the soil surface from burial depths of >10 cm (Figure S4).

Figure S4. The percentage of 3rd stage larvae migrating to the soil surface from either direct burial of 3rd stage larvae (Lucker 1936) or burial of dung infested with known quantities of nematode eggs or larvae (Lucker 1938).

Reinecke (1960) is a huge study and presents a large amount of data, but as published is difficult to follow. The data were re-evaluated here. Of the 58 trials - only some had dung beetle activity. Trials were excluded if Reinecke's (1960) comments made it clear that atmospheric conditions were unsuitable for nematode larval development, or the trial ran for an unusually long time, or there were other unusual circumstance (e.g. a dripping trough in one trial; no grass near pad in another).

Dung beetle activity was scored as 0 (no mention), 1 (dung beetle activity mentioned) and 2 (major impact mentioned). Firstly, the number of nematode larvae in the dung pats was examined in relation to dung beetle activity across both dry and wet trials (as dung beetles were active in both). Dung beetle activity clearly reduced the number of nematode larvae in dung pats (Fig. S5). The mean number of larvae collected from unattacked pads (back-transformed mean) was 1308.8 and from pads affected by dung beetles (activity levels 1+2 grouped) was 12.9, a reduction of 99.0%.

Figure S5. The total number of nematode larvae in dung pats with levels of dung beetle activity scored as 0, 1 or 2 (see text for details). Y = -1.23X + 3.02, $F_{1,38} = 28.76$, P < 0.00001, $r^2 = 0.42$. Data from Reineke (1960).

Soil under intact pats with no beetle activity also had slightly more nematode larvae than soil under pats where beetles had been active, but the effect was not statistically significant.

Trials were then divided into those where Reinecke (1960) considered that insufficient rain had fallen to enable nematode larvae to migrate from dung pats, and those where rainfall was sufficient. In trials where sufficient rain fell to allow migration of 3rd stage larvae out of the dung pads, there were more larvae recovered from adjacent pasture foliage around pads with no beetles than pads with beetle activity levels of 1 or 2 (grouped here because only 1 trial with sufficient rain had a beetle activity score of 2). Back-transformed means (180.8 and 22.8 for beetle activity levels of 0 and 1+2) reveal that this is a percentage reduction of 87.4% (Fig. S6).

Figure S6. The total number of 3rd stage larvae recovered from pasture foliage adjacent to dung pats where dung beetles had not been active (0) or had been moderately or highly active (1/2), in trials where sufficient rain had fallen to allow migration of larvae away from the dung pat. The difference is statistically significant (t_{13} = 2.99, *P* < 0.05). Error bars represent standard error of means. Data from Reineke (1960).

Reinecke (1960) reported that in trials where insufficient rain fell to enable larval migration away from the dung pat itself, then smaller amounts of rain could allow migration from small pieces of dung left behind after dung beetle activity. The re-analysed data do show some evidence that this is happening because in dry conditions there were more nematode larvae recovered on adjacent foliage in the trials that had moderate dung beetle activity (Fig. S7), but the effect was not statistically significant. Note that the mean numbers of larvae recovered from these dry trials are much lower than from the moist trials (means of 1.5, 5.1 and 0.9 for dung beetle activity scores of 0, 1 and 2 versus means in moist conditions of 180.8 and 22.8 for beetle activity levels of 0 and 1+2).

Figure S7. The total number of 3^{rd} stage larvae recovered from pasture foliage adjacent to dung pats where dung beetles had not been active (0) or had been moderately (1) or highly active (2), in trials where insufficient rain had fallen to allow migration of larvae away from the dung pat. The difference between activity levels 0 and 1 is not statistically significant ($t_{11} = 1.49$, P > 0.1). Error bars represent standard error of means. Data from Reineke (1960).

Similar analyses of the number of nematodes recovered from soil under the pat, adjacent soil or from plant roots, revealed no significant differences regardless of whether dry and moist trials were analysed together or separately.

Climate data for Reinecke (1960) used in Table 1 were obtained from the nearby city of Vryburg: http://www.saexplorer.co.za/south-africa/climate/vryburg_climate.asp

Persson 1974 presents data on several artificial burial trials. This has been summarised here in a simple table (Table S3).

		No./stage added:		L3 recoveries on foliage:			
Date	Burial	Eggs	L3	moss soil	clay soil	sandy	total
	depth					soil	recoveries
15/10/1971	10	180000		10	13	31	54
15/10/1971	20	180000		16	18	2	36
15/10/1971	10		20000	308	135	345	788
15/10/1971	20		20000	291	665	278	1234
9/05/1972	10	180000		539	679	114	1332
9/05/1972	20	180000		97	307	33	437
9/05/1972	10		15000	722	1010	52	1784
9/05/1972	20		15000	663	247	12	922

Table	S 3.	Data	tabulated	from	Persson	(1974)	
abic	55.	Data	labulated	110111	1 CI 33011	(1)/7/	٠

There was no obvious pattern of decreased emergence of larvae with increased burial depth. This is unusual compared to other burial studies. The design is similar to the Krecek and Murrell (1988) experiment with aluminium cylinders. Thus the same concern exists, that 3rd stage larval nematodes could be travelling up the inside of the metal cylinders as in other experiments using barriers.

Popay & Marshall 2002

This New Zealand study shows that shallow (less than 5 cm) burial of dung by the small Australian beetle *Onthophagous granulatus* results in higher nematode larval numbers in the soil, but there was no significant increase in the numbers of larvae on foliage. The study has not been published in a peer reviewed journal, and does contain several unusual techniques/results e.g. covering containers with cling-film in one trial that resulted in high levels of fungal infection on the dung. The trials also used two marsupial-adapted, adventive dung beetles that do normally process much stock dung in New Zealand. In their report they mention a further set of trials but no details are given.

Waghorn et al. 2002

This New Zealand experiment used shallow, artificial burial of dung to 5 cm to simulate dung beetle burial activities. Notably it is one of the only experiments to ever show that dung burial can lead to a significant increase in the numbers of 3rd instar larvae on foliage when compared to the control treatment with dung exposed on the surface. Waghorn et al (2011) also artificially buried dung to 5 cm, this time in a field trial: however, the numbers of L3 in foliage samples alone were not reported (only total L3 numbers recovered from dung, soil above the dung and plant material was reported).