A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland

DOI
10.1002/etc.3081
Publication Year
2016
Publication Site
Environmental Toxicology and Chemistry
Journal Volume
35
Page Numbers
1947–1952
General topic
Physiology
Specific topic
anthelminthics
trapping
Author

Jochmann, Ralf; Lipkow, E.; Blanckenhorn, Wolf U.

Abstract Note

Veterinary medical product residues can cause severe damage in the dung ecosystem. Depending on the manner of application and the time after treatment, the excreted concentration of a given pharmaceutical varies. The popular anthelmintic drug ivermectin can be applied to livestock in several different ways and is fecally excreted over a period of days to months after application. In a field experiment replicated in summer and autumn, the authors mixed 6 ivermectin concentrations plus a null control into fresh cow dung to assess the reaction of the dung insect community. Taxon richness of the insect dung fauna emerging from the dung, but not Hill diversity (1D) or the total number of individuals (abundance), decreased as ivermectin concentration increased. Corresponding declines in the number of emerging insects were found for most larger brachyceran flies and hymenopteran parasitoids, but not for most smaller nematoceran flies or beetles (except Hydrophilidae). Parallel pitfall traps recovered all major dung organism groups that emerged from the experimental dung, although at times in vastly different numbers. Ivermectin generally did not change the attractiveness of dung: differences in emergence therefore reflect differences in survival of coprophagous offspring of colonizing insects. Because sample size was limited to 6 replicates, the authors generally recommend more than 10 (seasonal) replicates and also testing higher concentrations than used in the present study as positive controls in future studies. Results accord with parallel experiments in which the substance was applied and passed through the cow's digestive system. In principle, therefore, the authors' experimental design is suitable for such higher-tier field tests of the response of the entire dung community to pharmaceutical residues, at least for ivermectin. Environ Toxicol Chem 2016;35:1947–1952. © 2015 SETAC. © 2015 SETAC